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ABSTRACT: The most effective way to move from target identification to the clinic
is to identify already approved drugs with the potential for activating or inhibiting
unintended targets (repurposing or repositioning). This is usually achieved by high
throughput chemical screening, transcriptome matching, or simple in silico ligand
docking. We now describe a novel rapid computational proteochemometric method
called “train, match, fit, streamline” (TMFS) to map new drug—target interaction
space and predict new uses. The TMFS method combines shape, topology, and
chemical signatures, including docking score and functional contact points of the
ligand, to predict potential drug—target interactions with remarkable accuracy. Using
the TMFS method, we performed extensive molecular fit computations on 3671
FDA approved drugs across 2335 human protein crystal structures. The TMEFS
method predicts drug—target associations with 91% accuracy for the majority of
drugs. Over 58% of the known best ligands for each target were correctly predicted as
top ranked, followed by 66%, 76%, 84%, and 91% for agents ranked in the top 10, 20,
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30, and 40, respectively, out of all 3671 drugs. Drugs ranked in the top 1—40 that have not been experimentally validated for a
particular target now become candidates for repositioning. Furthermore, we used the TMFS method to discover that
mebendazole, an antiparasitic with recently discovered and unexpected anticancer properties, has the structural potential to
inhibit VEGFR2. We confirmed experimentally that mebendazole inhibits VEGFR2 kinase activity and angiogenesis at doses
comparable with its known effects on hookworm. TMES also predicted, and was confirmed with surface plasmon resonance, that
dimethyl celecoxib and the anti-inflammatory agent celecoxib can bind cadherin-11, an adhesion molecule important in
rheumatoid arthritis and poor prognosis malignancies for which no targeted therapies exist. We anticipate that expanding our
TMES method to the >27000 clinically active agents available worldwide across all targets will be most useful in the

repositioning of existing drugs for new therapeutic targets.

B INTRODUCTION

Traditional methods of drug discovery face formidable scientific
and regulatory obstacles resulting in the passage of many
years and many failures from the discovery of a target to the
clinical application of a novel patentable drug designed to
inhibit or activate its function. Not surprisingly, there has been
a marked decline in the willingness of the pharmaceutical
industry to invest in drug discovery programs.'”® With the
emergence of systems biology approaches many more new drug
targets have been identified and validated. However, drug
development for these new targets is time-consuming and
prohibitively expensive leading to the concept of drug
repositioning in which existing approved compounds are
repurposed for another target/disease. There are clear
advantages to this approach including a dramatic reduction in
time, expense, and safety concerns.®

A number of existing approved drugs can be effective therapy
for diseases other than those for which they were approved.® "
Recently, the National Institutes of Health (NIH) has
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emphasized the importance of drug repositioning and
deposited more than 27 000 active pharmaceutical ingredients
in its Chemical Genomics Center (NCGC) database to
encourage public screening.>* To date, screening is usually
achieved by high throughput chemical screening or tran-
scriptome matching. Other methods include phenotypic
screening, protein—protein interaction assays, drug annotation
technologies, high-throughput screening using cell-based
disease models, gene activity mapping, ligand-based chem-
informatics approaches, and in vivo animal models of
diseases.'"'> However, experimentally testing all approved
drugs against all targets is extremely expensive and technically
unrealizable. An additional challenge of these screening studies
is that after one gets a “hit”, the rational mechanism of action
must still be deduced and tested. To address this, computa-
tional approaches based on drug regulated gene expression, side
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Figure 1. Graphical summary of the TMFS method work flow.

OLIC Iy ! i

effect profile, and protein or chemical similarity have been
developed.">™ By use of high performance computing, high-
throughput computational drug—target docking and screening
are now also feasible, but current methods are only able to
predict a rough estimation of the free energy of binding and
further suffer from high false positive and low accuracy rates of
drug—target association prediction.”’—>*

Given the aforementioned challenges, we directed our efforts
in this study to better predict “molecule of best fit” and have
developed a comprehensive prediction method called “train,
match, fit, streamline” (TMFS) that reduces false positive
predictions and enriches for the highest confidence drug—target
interactions. Previous studies screened FDA drugs using either
chemical similarity or docking with stringent scoring
criteria.’®!” In contrast, our TMES method combines 11
different descriptors, which include shape and topology
signatures, physicochemical functional descriptors, contact
points of the ligand and the target protein, chemical
similarity, and docking score. In the TMFS method,
descriptors are trained with template knowledge, match
and fit of the signatures are identified, and the data are
streamlined. Using this method, we report in silico screening
of 3671 FDA approved and investigational drugs across 2335
protein structures. Our directed efforts led to the identification
of known drug—target interactions with remarkable accuracy
and experimental confirmation of new activities for two well-
known drugs.

B MATERIALS AND METHODS

The TMFS method is outlined in Figure 1, and the following
sections detail the steps within each module.
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Protein Target Collection, Processing, and Prepara-
tion. Protein Collection. We performed an extensive search of
the PDB database (www.rcsb.org) with the following parameter
filters to obtain juman PDB holo structures: (a) source
organism, Homo sapiens; (b) macromolecule type, only contains
protein/enzyme; (c) has ligands, yes; (d) experimental method,
X-ray with experimental data; (e) do not include proteins that
have sequence similarity of >90%. This filtered query resulted
in 11 100 structures, which were subsequently downloaded.

Protein Processing. The PDB structures were filtered to
eliminate structures that contained only metals or other ions
noted without ligands. The retained set was further filtered by
removing structures containing “modified residues” as ligands
using a PERL script. Using another PERL script, we cleaned the
remaining protein PDB files so that they contained only the
correct chains, those that are biologically relevant, interact with
ligand, and contain all necessary cofactors. Next, the script was
formatted as a list that contained the RCSB two- and three-
letter codes corresponding to the cofactors and metals. These
records were then searched against HETATM lines for
matches. All matches were retained along with the correspond-
ing CHAIN records, and nonmatching HETATM lines were
deleted. The resulting modified PDB entries were devoid of all
solvent molecules, salts, and noncofactor ligands. A total of
2335 modified PDB structures were subjected to virtual protein
preparation. Modified PDB structures were converted into the
Schrodinger software’s native MAE format for protein
preparation. The “protein prep” command line utility was
used in a C-shell script to automate the process of adding
explicit hydrogen atoms and fixing the correct protonated states
and disulfide bonds.
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Ligand Collection, Processing, and Preparation.
Crystal Structures of Reference Ligands and FDA-Approved
and Experimental Drug Set Collection. For the set of protein
structures obtained prior to the protein preparation procedure,
we gathered their corresponding ligand crystal structures from
the PDB database. These ligands served as template
coordinates for receptor grid generation, a docking control,
and references for the ligand-centric rescoring. To achieve this,
we used a C-shell script that prepared a list of PDB IDs with
their corresponding ligand three-letter codes and substituted
the paired strings into a template hyperlink using the cURL
command to retrieve the appropriate SDF files. This
automation allowed for the retrieval of individual ligands that
retained their bioactive conformations and coordinates with
respect to each chain of their corresponding proteins. FDA-
approved and experimental drug structures were obtained from
the Drug Bank (www.drugbank.ca), FDA (www.FDA.gov), and
BindingDB (www.bindingdb.org).

Reference Ligand Processing. The SDF files downloaded
from the PDB database contained one or more instances of the
ligand depending on whether or not the corresponding proteins
were crystallized as multimeric structures. Since the PDB
structures were processed such that only the biologically
relevant chain is retained, we processed the SDF files so that
each one contained only a single instance of the ligand that
corresponds to the biologically active PDB chain. Using a PERL
script, we extracted chain identifiers from the PDB files and
used them to match the ligand chain IDs. The resulting SDF
files were then subjected to ligand preparation procedures using
Schrodinger’s LigPrep application.

Ligand Preparation. Reference Ligands. Since the
reference ligand crystal structures were downloaded as three-
dimensional structures in their bioactive conformations from
the PDB database, we used the “applyhtreatment” command via
a C-Shell script. This command allowed us to retain these
conformations while adding hydrogen atoms and neutralizing
the ligands for use in docking control, shape calculations, and
the generation of ligand-based descriptors using Schrodinger’s
QikProp application.

FDA-Approved/Investigational Drugs. We first acquired
these molecules in their two-dimensional SDF format. For
conversion to three-dimensional energy-minimized structures
and neutralization, a “ligprep” command was automated using a
C-Shell script. This set of neutralized molecules was also
subjected to QikProp descriptor generation. After neutraliza-
tion, the neutralized structures were ionized at a pH of 7.0
using the “ionizer” utility to generate ionized states that
retained the minimized conformations at physiological pH.
These ionized structures were later used for shape calculations
and docking.

Generation of Ligand Descriptors. Ligand descriptors for
the ligand-centric descriptor similarity approach were calculated
using Schrodinger’s QikProp application. The following
descriptors were computed for the reference ligands and
FDA-approved drugs: (1) number of hydrogen-bond acceptors,
(2) dipole moment, (3) number of hydrogen-bond donors, (4)
electron affinity, (S) globularity, (6) molecular weight, (7)
predicted log of the octanol/water partition coeflicient
(ClogP), (8) number of rotatable bonds, (9) solvent-accessible
surface area (SASA), and (10) volume.

Shape Quantification: Ligand and Protein Binding
Pockets. Shape descriptors for the ligand and protein binding
pockets were generated using a Java software package provided
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by the Thornton group.>® The spherical harmonics expansion
approach was used to describe the shape of ligands and binding
sites using protomol information of those sites obtained from
the sc-PDB database.>® For PDB files missing in sc-PDB, we
computed the protomols using SurFlex Protomol generator
within SYBYL X.1 (Tripos International, St. Louis, MO, U.S.).
Binding site protomols were stripped of all atoms except
hydrogen and carbon so that the final pocket shape is as refined
as possible. The methodological application of the expansion
with real spherical harmonic functions to approximate the sur-
face function was stimulated by the work by Kharaman et al.*®
Equation 1 shows the function for the spherical harmonics
shape calculations.

0 1
fO.0) =2 ¢, 00)

=0 m=-1

(1)

Grid Generation and Docking. Generation of Receptor
Grids for Docking. Grids were generated using Schrodinger’s
Glide module. Grid center points were determined from the
centroid of each protein’s cognate ligand. To obtain the
centroid, we extracted the Cartesian coordinates for each atom
in the ligand and took the average for each dimension. To
determine the size of the grids, we took a trial-and-error
approach to determine the smallest grid size that would
allow for the re-docking of all reference ligands. We chose
the largest reference ligand as our upper size limit and found
that a grid size of 20 A on each side was the minimum to allow
for it to dock. Thus, the grid size for docking simulations was
set at 20 A.

Creation of an FDA-Approved/Investigational Drugs Data
Set for Docking. Since the FDA drugs prepared using LigPrep
were energetically minimized, their final 3D shapes may deviate
significantly from those of the reference ligands and their native
binding pockets. In order to predict more accurate poses, we
sought to create unique conformer sets of FDA drugs with
respect to each protein. To do so, we first performed an
“exhaustive” conformational search using Schrodinger’s Conf-
Gen module for each drug to obtain a library of more than 100
000 conformers. The shape of each conformer, along with the
active conformation of the reference ligands, was then
calculated using the spherical harmonics expansion approach.®
Subsequently, shape similarities were quantified using the
Euclidean distance metric between each reference ligand and all
the drug conformers (eq 2). The drug data set for docking was
assembled by choosing the conformer for each drug whose
shape had the smallest Euclidean distance to the shape of the
reference cognate ligand for a given protein. Thus, each protein
had a unique drug data set whose conformers more closely
resembled the shape of that protein’s reference ligand.

Positive Docking Control: Choosing a Scoring Function.
Because a large number of protein—ligand complexes needed to
be scored and our computational resources being limited, we
sought a scoring function in Glide that would give reasonable
docking results most efficiently. To determine this, we re-
docked all the reference ligands, with their crystal structure
conformations conserved, to their native targets to confirm that
we were able to reproduce their bioactive conformations. We
chose the XP scoring function with a 10-pose postminimization
procedure to determine the final pose.

We determined reproducibility of the bioactive conforma-
tions using visual inspection. That is, we superimposed the
PDB crystal structure reference containing the crystallized
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www.drugbank.ca
www.FDA.gov
www.bindingdb.org

Journal of Medicinal Chemistry

ligand to the docking output conformation. Upon super-
imposing, we visually inspected the positions of the crystallized
ligand compared to the docking output ligand to note any
deviations. From thorough inspection of 100 protein—ligand
complexes, we found ~70% of them to have reproduced the
bioactive conformations. With this outcome, we decided to
proceed with the XP scoring function. Each unique FDA drug
was docked to its respective protein using the aforementioned
parameter options.

Analysis. Shape Similarities. To quantify sha3pe similarity,
we employed the Euclidean distance metric.”> Euclidean
distances allowed for a fine-resolution comparison of ligand
and pocket shapes through comparison of their spherical
harmonics expansion coefficients, as well as the shape of
multiple conformers for a single molecule. Equation 2 depicts
the Euclidean distance function.

d(a,b) = /z (b — a,)*
i=0 ()

The smaller the Euclidean distance between two coefficients
(vectors a and b having n = (I,,, + 1)*), the more similar they
are with regards to shape. As a general rule, shapes are identical
if the Euclidean distance is less than 3, similar if it is less than 5,
and increasingly dissimilar if it is greater than 6.*° The ligand-
to-ligand and ligand-to-pocket (protein binding site) Euclidean
distance scores were normalized and implemented into the final
ranking equation. Euclidean distances were also calculated for
protein pocket-to-pocket shape comparisons, which were used
for a binding site similarity analysis outside the “ligand of good
fit” question.

Ligand-Based Descriptor Similarities. Since our approach in
determining the “ligand of good fit” depends partially on the
cocrystallized ligand, we sought to perform analyses of
similarities of the query molecules to the reference ligands
using the ligand-based descriptors described earlier. The
QikProp module in Schrodinger provides quantification of
ligand-based descriptors, such as molecule globularity, which
further allows for statistical similarity analysis. To do so, we
used the Strike module in Schrodinger to calculate Tanimoto
and Manhattan similarity scores for each probe molecule’s
descriptor value against all of the reference ligands. A Tanimoto
score of 1.0 or a Manhattan score of 0.0 for a particular
descriptor signifies that a given probe molecule is practically
identical to the reference ligand based on that descriptor
property. The discrepancy in the usage of Tanimoto or
Manhattan scores is due to whether or not the variable at hand
is continuous or discrete, respectively. These similarity scores
were later normalized and substituted for the final ranking
procedure in eq 8.

Data Normalization. Next, we normalized the docking
scores, shape similarity, Euclidean distance scores, and ligand-
based descriptor similarity scores to create a common scoring
scheme whose values ranged from 0 to 1, with 1 being either
the most favorable docked conformation or greatest similarity
based on the shape and ligand-based descriptors. Equations 3
and 4 depict the schema of normalization.

N = X — min
max — min (3)
N=1— X — min
max — min 4)
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Equation 3 was used for data whose best score was the
maximum score (i.e, Tanimoto scores for ligand-based
descriptors), while eq 4 was used for data whose best score
was the minimum score (ie., docking scores where the most
negative score is the best). The final normalized scores were
substituted in eq 8.

Ligand Interaction Correction Score. To get a better
estimate of ligand—protein interactions on the reference
binding site, we introduced another correction term called
“optimal ligand interaction correction” (OLIC). This correction
assumes that ligands will have similar experimental activity if
their interaction involves similar binding site residues and
makes similar interaction patterns compared to the reference
ligand. The nature of the interactions and their interacting
residue motifs are then input to the OLIC algorithm, which
calculated a score for each reference and test set ligand contact
point using eqs S and 6. The final contact point score was
calculated using eq 7. To be consistent with the other scores
calculated above, the corrected score was normalized in the
range of 0 to 1 using eqs 3 and 4. If the corrected score is “0”,
then the test set ligand has a similar interaction pattern and
similar activity and is therefore considered as the molecule of
best fit when compared to the reference ligand. If the corrected
score is “1”, then the test set ligand is considered as a
nonbinder.

S(OLIC-R) = i no; where i <3671, j< 2335
- ©)
S(OLIC-T) = i no; + no; where i< 3671,
n=1
j <2338 (6)
CS(OLIC) = i S(OLIC-R) — S(OLIC-T) .
n—1 7

With respect to eqs S, 6, and 7, “S(OLIC-R)” represents the
score for reference ligand, “S(OLIC-T)” represents the score
for test set ligands, “CS (OLIC)” is the corrected score, where
“n” is the total number of contact points extending from 1 to
o0, “0” represents contact point, “c;” is the contact points of ith
ligand with jth protein, and “c;” is the contact points of jth
protein with ith ligand.

Prediction of Molecule of Best-Fit. Molecules of best fit
were calculated by the TMFS method comprehensive score “Z”
given by the following equation:

Z=wY(5,0) + ), [0f(0,0) + . f(q,0)]

i=1

)
+ Y X,(a,6)+CS(OLIC)
n=1 (8)

The “Y” term represents the normalized docking score of a
ligand (o) to a particular protein (o,), along with its designated
weight (@;). The first summation term, where | = 1, represents
the combination of normalized Euclidean distance scores for
protein pocket—ligand (f(c,,01)) and reference ligand (o.)—
ligand (f(0.,61)) comparisons with designated weights (®;) and

®,,,), respectively. The second summation term, where j = 8,
represents the combination of ligand-based descriptor terms
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(eight total) and their respective values. Normalized Tanimoto
or Manhattan scores for each descriptor are represented by X,
where the value of n corresponds to a particular descriptor such
as solvent-accessible surface area (SASA) or number of
rotatable bonds (Rotor). Note that the identities of Oy O
and o] (protein, reference ligand crystal structure for that
protein, and probe molecule, respectively), are constant across
all terms of the equation.

The values for weights w,, ®, and w,,, are 4, 2, and 2,
respectively. The final ranking of protein target—ligand
complexes comprises 11 total descriptors, 8 of which are solely
ligand-based. In order to reduce this bias, we provided weights
to the protein-oriented descriptors (i.e, docking score and
protein shape), as well as to the ligand shape score because we
believe that the shape parameters are more accurate
approximations of the true protein—ligand interactions. The
weights of 4, 2, and 2 for docking, protein shape, and ligand
shape scores, respectively, provided the final ranking equation
with a good balance among the descriptors that led to the
accurate predictions noted in Figure 2B.

The last term represents the “CS(OLIC)” correction term
for protein—ligand interaction points calculated using eq 7. The
sum of all these terms provides a comprehensive TMFES Z-score
for a single ligand with respect to a protein that takes into
account receptor-centric features (docking score), ligand-
centric nonstructural descriptors (QikProp descriptors from
Schrodinger), and shape-based features (protein pocket—ligand
and ligand—ligand).

Validation of TMFS Method. As will be explained in the
Results and Discussion, a proper validation of the TMES
predictions across our large protein target data set (2335
targets) using the currently available literature poses many
challenges. In order to account for these challenges, we devised
the following equation to calculate the percent correctly
predicted (PCP) targets:

& nA; + nB,; + nY;
PCP = ). L N X 100
=1 nBji + nXﬁ + nYﬁ + nZﬁ - nEji
where i< 3671, j <2335 9)

where “n” represents total number of targets; “A, B, Y, B, X, Y,
Z, and E” represent targets; “A;” is the number of predicted
targets “j” for drug “i"; “B;” is the number of experimentally
validated targets “j” for drug “i”; “X;;” is the number of correctly
predicted targets “” from these experimental results for drug
“i"; “Y;” is the number of targets not validated experimentally
within the predicted lists for drug “i"; “Z;” is the number of
experimentally validated targets “j” for drug “i” that are not
included in the target data set; and “E;” is number of
experimentally validated targets “j” for drug “i” that were not
target hits but are included in the target data set.
Cadherin-11 Surface Plasmon Resonance (SPR) Assay.
Surface plasmon resonance experiments were carried out with a
Biacore T100 equipped with a CMS sensor chip. Briefly, mouse
extracellular domain 1-2 (EC 1-2) C-terminally cysteine-tagged
cadherin-11 recombinant protein®® was immobilized on flow
cell (FC) 2 in HEPES buffered saline (10 mM Hepes, pH 7.4,
and 150 mM NaCl, 3 mM CaCl2) using a thiol-coupling kit
according to the manufacturer’s protocol, resulting in
immobilization levels of 4580 response units (RU). FC1 was
only activated and inactivated and used as a reference.

Celecoxib and dimethyl celecoxib stock solution was diluted
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Figure 2. (A) Accuracy of the TMFS method represented by ROC
curves. We examined the TMFES method accuracy against the Glide
docking scoring function. Here we report, in increasing order of
enrichment of true bioactive compounds, the performance of each
scoring method via their respective AUC: Glide score (0.3889, red),
Glide score + atom pair (AP) similarity (0.3889, yellow), shape
descriptors only (0.6905, teal), ligand-centric descriptors only (0.7500,
blue), Glide score + AP similarity + post-shape (0.8167, green), and
TMFS score (0.8810, purple). (B) Validation of predicted drug—target
associations for FDA approved drugs. Predicted drug—target
associations for each FDA drug in the top 1 through top 40 ranked
hits were individually matched against the publically available
experimental binding and functional data. Percent correctly predicted
(PCP) targets were then calculated using eq 9 for each category of the
top rank lists (ie, top 1 to top 40). The histogram (filled bars)
represents the percent correctly predicted (PCP) targets (y-axis) for
each category of top rank lists. Error bars and percentages are
highlighted on each histogram bar.

to a final concentration of 200, 100, 50, 25, 12 M and injected
in 10 mM Hepes, 150 mM NaCl, 3 mM CaCl,, 1% DMSO, and
0.5% P20. Each injection was repeated three times for 60 s. FC1
signals were deducted from FC2 for background noise
elimination.

Growth Inhibition of MDA-MB-231 Invasive Breast Cancer
Cell Line Using MTS Assay. MDA-MB-231 cells were seeded at
4000 cells/well in a 96-well plate. Stock of celecoxib and
dimethyl celecoxib was diluted in DMEM + 10% FBS to make
final concentrations used for treatment, and all concentrations
were prepared to have the same amount of DMSO. Three wells
per concentration were treated 24 h after seeding, and the MTS
assay was performed 48 h after treatment. The CellTiter96
aqueous nonradioactive cell proliferation assay kit (Promega)

dx.doi.org/10.1021/jm300576q | J. Med. Chem. 2012, 55, 6832—6848
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was used according to the manufacturer’s recommendations.
The absorbance values were measured at 490 nm and viable
cells presented as a percentage of the absorbance of DMSO-
only treated cells. IC, and R* values were calculated with the
Graphpad Prism software.

VEGFR2 Kinase Assay. The VEGFR2 kinase assay was
performed by using the Caliper LabChip 3000 and a 12-sipper
LabChip. LabChip assays are separations-based, wherein the
product and substrate are electrophoretically separated, thereby
minimizing interference and yielding high data quality. Z’
factors for both the EZ reader and LC3000 enzymatic assays
are routinely between 0.8 and 0.9. The off-chip incubation
mobility-shift kinase assay uses a microfluidic chip to measure
the conversion of a fluorescent peptide substrate to a phos-
phorylated product. The reaction mixture, from a microtiter
well plate, is introduced through a capillary sipper onto the
chip, where the nonphosphorylated substrate and phosphory-
lated product are separated by electrophoresis and detected via
laser-induced fluorescence. The signature of the fluorescence
signal over time reveals the extent of the reaction. The
precision of microfluidics allows for the detection of subtle
interactions between drug candidates and therapeutic targets.

The assay reaction is fluorescein-peptide + ATP —
fluorescein-phosphopeptide + ADP, which is measured by
charge separation of phosphorylated product and unphosphory-
lated substrate. The assay incubation is carried out in 100 mM
HEPES (pH 7.5), 10 mM MgCl, 1 mM DTT, 0.05%
CHAPSO, 1.5 uM peptide substrate, 450 uM ATP, nine
different concentrations of mebendazole, and staurosporine
used as the positive control. Following addition of ATP,
samples were incubated for 60 min at room temperature and
the reaction was terminated by the addition of stop buffer
containing 100 mM HEPES (pH 7.5), 7 mM EDTA, 0.015%
Brij-35, 4% DMSO. Phosphorylated product and unphosphory-
lated substrate were separated by charge using electrophoretic
mobility shift. The product formed is compared to control wells
to determine inhibition or enhancement of enzyme activity.

Angiogenesis Assay. Mebendazole was dissolved in 50 yL of
DMSO and diluted with endothelial growth medium (EGM) to
a final concentration of 1 mM. The highest concentration of
DMSO is 0.1%. Human umbilical vein endothelial cells
(HUVECs) were purchased from Cambrex Co. (East
Rutherford, NJ, U.S.) and maintained in endothelial growth
medium (EGM) supplemented with 2% FBS, 0.1% EGF, 0.1%
hydrocortisone, 0.1% GA-1000, and 0.4% BBE. Morphogenesis
assay on Matrigel was performed according to the manufac-
turer’s instructions (Chemicon International). The ECMatrix
kit consists of laminin, collagen type IV, heparan sulfate,
proteoglycans, entactin, and nidogen. It also contains various
growth factors (TGF-f, FGF) and proteolytic enzymes
(plasminogen, tPA, and MMPs) that are normally produced
in EHS tumors. The incubation condition was optimized for
maximal tube formation as follows: 50 pL of ECMatrix was
suitably diluted in a 9:1 ratio with 10X diluent buffer and used
to coat the 96-well plate. The coated plates were incubated at
37 °C for 1 h to allow the matrix solution to solidify. HUVECs
were cultured for 24 h in EGM with 2% FBS, trypsinized, and
resuspended in the growth medium. After 1 h of preincuba-
tion of the plate with Matrix solution, the HUVECs were
plated at S X 10° cells/well in the absence or in the presence
of mebendazole (1—100 pM). After 24 h of incubation at
37 °C, the three-dimensional organization (cellular network
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structures) was examined under an inverted photomicroscope.
Each treatment was performed in triplicate.

B RESULTS AND DISCUSSION

We have developed a new proteochemometric method called
“TMFS” that utilizes a comprehensive receptor- and ligand-
centric approach to predict molecules of “good fit”. The
detailed scheme is displayed in Figure 1. Briefly, in the
receptor-centric approach, we collected ~11 000 X-ray 3D
structures (human—liganded proteins) from the PDB
database (www.rcsb.org).

After filtering (see Materials and Methods for details), we
included 2335 unique protein structures for the receptor- and
ligand-centric simulations. We docked 3671 FDA approved and
clinical trial drugs as reported in DrugBank, BindingDB, and
FDA.org. Given that an important factor in determining a
molecule of “good fit” is the similarity of its shape to those of
the bioactive conformation of the reference ligand and ligand-
binding pocket, we integrated receptor and ligand shape
descriptors and similarity quantification into TMES scoring. To
quantify a molecule’s shape similarity, we employed the
Euclidean distance metric as described in Kharaman et al.*®
We calculated the binding pocket, ligand, and drugs shape using
sc-PDB*’ and SurFlexDock Protomol generator within SYBYL
X.1.3® Then we collected and integrated the docking, shape,
and ligand descriptor similarity score data. Independently, the
ligand—protein contact point scores were calculated using our
“OLIC” method. Each data set score was normalized between 0
and 1. Then, using eq 8, we computed a final ranking score, the
comprehensive TMFS score “Z” that gives molecules of “good
fit”.

Analysis of Accuracy of the TMFS Method Using ROC.
Next we examined the precision of the TMFS method to
ascertain if it substantially enriches the number of active
compounds detected at the top of the ranking list. Since our

ey
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Figure 3. Principle component analysis (PCA) of individual protein-
and ligand-based descriptor variables for determination of descriptor
correlation with obtaining reliable predictions. Scree plot depicting
the first three principal components accounting for the majority of
the data variance. The first three principle components account for the
majority of the data variance; hence, the transformed eigenvalue
coeflicients of the above descriptor variables were plotted against the
first three principle components in Supporting Information Figure 1.
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Figure 4. Analysis of FDA drug—target association. Frequency histogram
depicting the number of protein target hits (y-axis) for each FDA drug
(-axis). Targets are considered hits for a particular molecule if the final
ranking (Z-score) of the molecule places it in the top 1 position or
somewhere in the top 40 positions. (A) Frequency histogram depicting
the number of protein targets hit (y-aixs) for each FDA drugs (x-axis) in
the top 1 position. The 2D structure of staurosporine, the drug with the
most hits, is also displayed. (B) Frequency histogram depicting the
number of protein target hits (y-axis) for each FDA drug (x-axis) in the
top 40 position. The top 40 provides a more relaxed criterion for protein
targets to be considered as hits. As such, for those molecules that survive
the final cut-offs and are found in the top 40 rank list for a particular
protein, we predict that they have a good potential to bind to that given
target. DB02197, DB03376, and DB02916, drugs with the most predicted
hits are depicted. (C) To further enrich our prediction paradigm, we
included one more term corresponding to ligand shape. The value for this
term is the rmsd of the docked ligand compared to the active
conformation of the cocrystallized ligand for a particular protein crystal
structure, which is derived from a set of 100 protein targets. The
histogram portrays the frequency of hits of each FDA drug along with the
2D structure of the drug with most target hits (indomethacin).

6838

study involved 2335 unique proteins and 3671 drugs, the
docked output has ~8.4 million protein—ligand complexes for
each docking protocol. We were interested in applying the
TMEFS method in conjunction with the most efficient docking
algorithm to produce reliable results in the quickest time
possible. To do this, we obtained a database of actives and
decoys for estrogen receptor alpha (ERa) from the DUD
(http://dud.docking.org/), which contains ~3000 com-
pounds.>® Then we performed our computational prediction
protocol on the crystal structure of the agonist conforma-
tion of estrogen receptor (PDB ID 3ERD) to determine if
our TMFS method significantly enriches the number of
known active compounds within the top 20 positions
compared to the options provided solely in the Schrodinger
software.

First, we performed simple docking as our control. The Glide
docking score yielded a high false positive rate (Figure 2A). We
then repeated the procedure with the “atom-pair similarity” of
the probe ligands. This procedure reranks docked compounds
according to their atom-pair similarity to a template ligand, in
this case the cocrystallized ligand in its active conformation.
The conformers of the probe molecules in these two steps were
simply the minimized structures from the LigPrep application.
As shown in Figure 2A, atom-pair similarity reranking did not
provide significant enrichment over the pure Glide docking
score. Next, we wanted to determine if choosing probe
molecule conformers whose shapes most closely matched that
of the reference ligand would result in greater enrichment. We
prepared an exhaustive conformer library for each drug and
chose the conformer whose shape most closely matched that of
the active conformation of the crystallized ligand for each
protein. With the new, individualized “conformer set” of FDA
drugs for ERa, we repeated the Glide docking procedure with
atom-pair similarity. This method significantly enriched the
number of active compounds in the top 20 positions.
Interestingly, when the shape parameters were considered in
isolation, the enrichment was also significant. Finally, since
these three procedures are receptor-centric, we added the
ligand-centric approach to the last procedure to see if our
combined receptor—ligand centric method would result in
maximal enrichment. That is, we incorporated the ligand-based
descriptor similarities to the reference ligand as well as probe-
ligand-to-reference-ligand and probe-ligand-to-ligand-pocket
shape (protein binding site) similarities to the docking score
of the refined molecule database with atom-pair similarity. We
applied computed values of all the receptor- and ligand-centric
results unique to the TMFS method to solve the
comprehensive ranking score “Z” (eq 8). The resulting top
20 rankings from each of these four procedures were
plotted on a receiver operator curve (ROC). From the ROC
(Figure 2A), we were able to determine the effect of our
prediction method on the enrichment of true positives over
false positives. In comparison to all the individual descriptor
approaches (i.e., ligand-centric or shape descriptors only),
this combined approach showed the greatest enrichment of
active compounds versus decoys and served to validate our
TMES method.

While we understand that ROC enrichment performance
analysis was performed on a single instance of the DUD, the
purpose of using this well-established target (ERa) was for a
proof-of-concept for our TMFS approach. As will be explained
in the subsequent section, the application of TMEFS to the 2335
human protein crystal structures is to validate our method
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Table 1. Predicted Drug—Target Associations in Terms of Drug Frequency Propensity for Each Target®

Molecule ID Structure # of Occurrences Target PDB ID(s)
DB02010 32 2HYS8, 1YVI], 3FQS, 2VWYV, 1R0P,
(Staurosporine) /'j» 3EQF, 2VTQ, 2VU3, 2RKU, 1AQI,

ol IBYG, 10KY, 1Q3D, 1QPD, 1SM2,
CI o< I 1U59, 1XBC, 1XJD, 1YHS, 2BUIJ,
Li 2DQ7, 2HW7, 2NRY, 20IC, 2Z7R,
) 3A40, 3A60, 3A62, 3BKB, 3FME,
IPKD, 3DTC
DB04700 32 INUT, 1HUR, INUE, 1XTQ, 1ZOF,
(Glutathione _ 126X, 1ZD9, 2AED, 2AL7, 2ERX,
Sulfinate) Y ET T 2FOL, 2GF0, 2GF9, 2HT6, 2NGR,
2NZJ, 2052, 20DE, 2W2T, 2X2E,
2X2F, 3CHS, 3KUC, 3KUD, IF5N,
IGUA, 1KMQ, 3GFT, 1C1Y, IYHN,
2CLS, 1HY3
DB00686 29 121P, 1JAIL, 2QRZ, 2P2L, 3LXX,
(Pentosan 113L, 2RJ7, 2PEZ, 1R2Q, 2ATX,
Polysulfate) A A 2EW1, 2F9M, 2FG5, 20CB, 2Q3F,
i3 3KKM, 3KKN, IN6L, 1QRA, 1UPT,
120K, 2A5D, 2GZD, 2H57, 3DOE,
3MIJH, 1W4R, 1JV3, 1IKWS
DB03003 24 2HEH, 2QSY, 1MC5, 1ANGQ, 1KAO,
(Glutathione 2DPX, 2E9S, 2F7S, 2F9L, 2J1L,
Sulfonic Acid) 0 1CTQ, 1YZK, 1YZQ, 1Z08, 2RGB,
3DDC, 3K8Y, 3LBI, 3LBN, 1YZX,
1IM7B, 1XTS, 2C5L, 3RAP
DB02197 . 22 3E70, 2IW9, 1YKR, 3EMG, 1Y6A,
(4-[(4- <ﬁ{,} 2J51, 2W40, 2WU6, 2061, 2C6K,
Imidazo[1,2-a] {,:'_’/ 2C6L, 2CoM, 2WO05, 2ZA7Z, 10IT,
Pyridin-3-Y1 ; ~ 10IR, 1URW, 2VV9, 3CGO, 3L8X,
pyrimidin-2-YT1) W 3H3C, 2J9M
Amino]
Benzenesulfon-
amide)
DB03376 19 INST, 1ZRH, 1JIC, 20XC, 2WQE,
('5'-0-(N-(L- 3EWS, 1XNJ, 3FZP, 1JIB, 1JNK,
Alanyl)- 7 = 2DWB, 2HWI1, 3B7G, 2BIY, 2QK4,
Sulfamoyl) - 3CYI, IWMS, 1Z2C, 3B2T
Adenosine)
DB03869 19 1K3A, 2DWP, 2C02, 20JW, 1JKL,
(5'-0-(N-(L- IMQB, 2GJK, 2ITX, 2PVR, 2B4Y,
Seryl)- I 4 3K35, 3KH6, IHIW, 2CCH, 3A8W,
Sulfamoyl) Eame 3H8V, 3I9N, 1ISH, 3DZH
Adenosine
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Table 1. continued

Molecule ID Structure # of Occurrences Target PDB ID(s)
DBO01145 18 IMQ4, 2WSA, 2WZB, 2WZC, 3A7],
(Sulfoxone) | 3JXU, 3LQ3, 106L, 1ZXM, 2A2D,

lr 2E8A, 20U7, 20Z0, 2Q0C, 3KEX,
¢ 3DAY, 2YXU, 2FFU
DB03916 16 2HKS5, 3FZR, 2HXL, 1HI1S, 2HOG,
(4-{2-[4-(2- J 2ITP, 3LCD, 3L58, 3BMY, 2VIW,
Aminoethyl) 2El7, 3EKN, 3KQ7, 2ZM4, 1YOL,
Piperazin-1- i ) 2VIE
Y1]Pyridin-4- B
Y1}-N-(3-
Chloro-4-
Methylphenyl)
Pyrimidin-2-
Amine)
DB03536 14 2HHA, 3L5C, 3B7R, 20PY, 3MOS5,
(Benzoyl- @ 3DOE, 3E88, IDMT, 3DWB, 1QZY,
Arginine- : 3C71, 2QG4, 2XFJ, 2WF3
Alanine-Methyl N I& ‘( )
Ketone) e >~

“The top 10 occurring molecules and the PDB identification codes corresponding to them for the top 1 cohort.

across the largest and most diverse data set we could obtain. In
fact, our protein target set included 21 out of the 40 total DUD
targets to date with respect to protein nomenclature.
Furthermore, as depicted in Supporting Information Table 1,
our protein target set also includes many different instances of
those DUD targets. For example, PPARy is represented in our
protein target set through five unique PDB crystal structures:
IKNU, INYX, 3CSS, 3FUR, and 3KSS. Although ROC
enrichment performance analyses were not conducted for
these other DUD targets, they are included in the large
validation, which contributed to the final accuracy score (see
next section). We therefore found the incorporation of these
DUD targets in this fashion to be of greater value for our
validation than a smaller number of individual ROC
comparisons.

Validation of the TMFS Method Using Publically
Available Literature. To validate predicted drug—target
signatures, we used manual, structural, and automated text
curation to exhaustively search DrugBank, BindingDB,
ChemBL, PubChem, PDSP, and other published literature
where experimental binding/functional data are available for
FDA drugs. Since our drug data sets are associated with the
DrugBank ID, we downloaded the most recently updated
“drugcard” from DrugBank, which included information for
each drug with respect to their targets and PDB IDs if available.
This file was parsed into individual “drugcards” that correspond
to each individual compound in the database. We subsequently
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took DrugBank ID/PDB ID combinations for each FDA
molecule found in the top 1 through top 40 lists for each target
and searched for matches across every individual “drugcard”.
We recorded a successful prediction for every match occurrence
and annotated the data to the corresponding drug in the top 1,
top 10, top 20, top 30, and top 40 ranked lists. Then we used
“significance analysis” (eq 9) to obtain the percent correctly
predicted (PCP) drug—target signatures. A similar procedure
was used to curate and validate other experimental bioassay
databases (see following section).

One caveat of our approach is that this validation method
only contains a subset of the overall potential successful
predictions. This is because many of the predicted hits have not
been tested experimentally; some of the hits listed in the
databases are not included in our target data sets, and although
a protein target may have many crystal structures deposited in
the PDB, experimental data sources report only a single PDB
ID for a target associated with a drug. To our knowledge, there
is no reconciliatory method in the PDB to match PDB IDs to a
single protein name, since each PDB file contains a different
variation of the target name. In other words, we were unable to
aggregate all the PDB IDs for a single protein target. Although
it may be possible to perform a “fuzzy” text search, this process
would decrease accuracy and is beyond the scope of our work.
In addition our FDA-approved drug database is only a subset
(54%) of the entire DrugBank database, which results in a
skewed representation of this validation process. Similarly, we

dx.doi.org/10.1021/jm300576q | J. Med. Chem. 2012, 55, 6832—6848
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Figure 5. Analysis of FDA blockbuster drug-target association. (A) Heat map depicting hit frequencies of the top 200 “blockbuster” FDA drugs
across each top-rank category. Each box shows the number of occurrences, while the color scheme illustrates high frequencies as red and low
frequencies as blue. (B) Heat map showing FDA approved drugs predicted to hit the greatest number of protein targets: Sutent, Alimta, Lescol,
Celebrex, Premarin, Zetia, and Blopress. (C) Heat map portraying FDA approved drugs that have no hits in our protein data set: Prograf, Valcote,
Concerta, Sifrol, Niaspan, Exelon, Evodart, Sevorane, and Klacid. (D) Histogram showing the percentage of total protein targets in our data set that

have a FDA blockbuster drug in their top 1, S, and 20 rank lists.

do not have all of the PDB IDs that are found in the entire
DrugBank database. This is because our final protein target
database was contingent upon our compiled target data set of
2335. Furthermore, we have not included universal target
binding component proteins such as the multidrug resistant
(MDR) protein cytochrome p4S50. These caveats pose an
interesting challenge in performing an optimal validation check.
To address these concerns in the validation, we have developed
a statistical procedure specifically for this kind of validation
task; eq 9 calculates the percent correctly predicted (PCP)
targets.

We repeated the structural and automated text curation to
exhaustively search DrugBank, BindingDB, ChemBL, Pub-
Chem, PDSP, and other published literatures. Figure 2B depicts
the percentage of targets correctly predicted by the TMES
method across all the databases. To obtain this percentage, we

6841

counted the number of matched and unmatched pairs and also
determined the excluded/included missing targets in terms of
their protein target name, drug name or structure, or PDB
code. Then we substituted this number in eq 9. This number
was used as the total possible validations for each drug. Upon
analysis of the results and validation generated using eq 9, we
reliably reproduced many experimentally validated drug—target
associations (Figure 2B). We achieved >91% correct
predictions for the majority of drugs. A classical example of
some of the literature-validated (>95% target hits) include
staurosporine, genistein, paricalcitol, ethoxzolamide, alitreti-
noin, and drospirenone. The first ranked drug for each target is
58.5% correctly predicted followed by 65%, 77%, 85%, and 91%
for the top 10, 20, 30, and 40, respectively (Figure 2B).
Prediction of a first-ranked drug is more sensitive to descriptor
prediction value error such that a slight variation in the

dx.doi.org/10.1021/jm300576q | J. Med. Chem. 2012, 55, 6832—6848
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Figure 6. Analysis of drug promiscuity. The “value of promiscuity
(nonspecificity) for each drug is represented as a numerical score from
the combined sum of the number of unique folds and the number of
unique families that a particular molecule is predicted to hit. The drug
with the greatest “value of nonspecificity” is considered to be the most
promiscuous molecule. The histogram depicts the “values of
nonspecificity” (y-axis) for each drug (x-axis) that had been ranked
in the top 1 position, along with the 2D structures of the three most
promiscuous compounds.

descriptor error will affect the correct prediction. For reference,
we have included the data for all top-ranked staurosporine—
protein target interactions in Supporting Information Table 2.
In contrast, ranking within the top 40 is the least sensitive, and
this error is more or less balanced. This is quite remarkable
considering the completely in silico nature of the screening and
the experimental vagaries for many of the interactions.
Performance of the TMFS Method. To determine how
well the receptor- and ligand-centric component descriptors
(11 in total) correlate in obtaining a reliable prediction of hits
for a given protein target, we performed a principle component
analysis (PCA). The data set for PCA comprised the
normalized descriptor values for the top 40 hits with respect
to their predicted targets (n = 2335). To reduce the
dimensionality of the data, we first performed a “scree plot” to
determine how many principle components explain most of the
variance in the data. We found that the first three principle
components account for approximately 76% of the data

variance (Figure 3). Thus, we plotted the transformed
eigenvalue coefficients of the above descriptors against the first
three principle components (Supporting Information Figure 1).
All descriptors, with the exception of docking score and
hydrogen bond donor (DonorHB), exhibit a positive
correlation across all three components. This implies that
most of the ligand-centric descriptors and ligand/protein-
centric shape descriptors correlate well with each other in
determining a “molecule of good fit” for a given target.
Furthermore, the docking score descriptor deviates from the
rest of the descriptors. In other words, the protein—ligand
complex that has the lowest-energy pose is not necessarily (or
even likely to be) the one with the best fit. The docking score is
a raw energetic term that takes into account the energetics of
interactions between a ligand and protein where important
parameters such as solvent, entropy, and enthalpy are absent. In
contrast, the TMFS method includes protein and ligand
topology descriptors in addition to energetic terms. Hence, a
reliable prediction algorithm would benefit from a compre-
hensive approach that takes into account both receptor- and
ligand-centric descriptors.

Analysis of Drug—Target Associations. Drug Frequency
Propensity. Next we analyzed predicted drug—target associa-
tions (Figure 4 and Table 1) in terms of drug frequency
propensity for each target (i.e., drugs that interact with multiple
targets with potentially good or bad effects). If a side effect is
desirable, the drug might be repurposed for an additional
indication. Targets are considered as hits if the TMFS rank
places it in the top 1 (Figure 4A) to top 40 (Figure 4B). The
broad-spectrum kinase inhibitor staurosporine was predicted to
hit the most protein targets in the top 1 position. This finding is
consistent with previous reports that staurosporine is a
prototypical ATP-competitive multikinase inhibitor, and 8%
of our PDB data set comprises kinase-like structures.** Some
clinical drugs with IDs denoted by DrugBank as DB02197,
DB02916, and DB03376 are also predicted to hit many targets
in the top 40 (Figure 4B). These structures are also ATP-like,
which is not surprising, as the ATP-/GTP-like small molecules
bind naturally to many proteins. In addition, the PDB database
is biased toward kinases where many of those kinase structures
are cocrystallized with ATP, GTP, or closely related analogues.
In an effort to further enrich our prediction paradigm, we
included an rmsd term for ligand shape, where the rmsd of
the docked ligand is compared to the active conformation of
the cocrystallized ligand. Since this was a computational-
intensive process, we randomly chose 100 protein targets. In
this case, indomethacin, a nonsteroidal anti-inflammatory drug,

Table 2. Specific Protein Folds of Targets That TMFS Predicted for the Top Five Most Promiscuous Drugs

molecule

folds targeted

DB02197  protein kinase-like, ATPase domain of HSP90 chaperone/DNA topoisomerase II, nudix, zincin-like, phosphotyrosine protein phosphatases II, P-loop
containing nucleoside triphosphate hydrolases, NAD(P)-binding Rossman fold domains, TIM f/a-barrel, concanavalin A-like lectin/glucanases,

prealbumin-like

DB03869  HD-domain/PDEase-like, protein kinase-like, ATPase domain of HSP90 chaperone/DNA topoisomerase II, P-loop containing nucleoside triphosphate
hydrolases, TIM f3/a-barrel, ferredoxin-like, anticodon-binding domain-like, carbonic anhydrase, trypsin-like serine proteases, nuclear receptor ligand-
binding domain

DB02010  GRIP domain, P-loop containing nucleoside triphosphate hydrolases, TIM f3/a-barrel, protein kinase-like, phosphotyrosine protein phosphatases II,

trypsin-like serine proteases, HAD-like, SH2-like, ribonuclease H-like motif, eight-bladed S-propeller

DB00686  protein kinase-like, ATPase domain of HSP90 chaperone/DNA topoisomerase II, phosphotyrosine protein phosphatases II, P-loop containing
nucleoside triphosphate hydrolases, phosphoglycerate mutase-like, lipocalins, cyclin-like, trypsin-like serine proteases, nuclear receptor ligand-binding

domain

DB04700  protein kinase-like, ATPase domain of HSP90 chaperone/DNA topoisomerase II, carbonic anhydrase, nuclear receptor ligand-binding domain,
phosphorylase/hydrolase-like, ar/a toroid, transducin (a subunit), GST C-terminal domain-like, DNA/RNA-binding three-helical bundle

dx.doi.org/10.1021/jm300576q | J. Med. Chem. 2012, 55, 6832—6848
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Table 3. Specific Protein Families of Targets That TMFS Predicted for the Top Five Most Promiscuous Drugs

families targeted

protein kinases (catalytic subunit), HSP90 (N-terminal domain), MutT-like, matrix metalloproteinases (catalytic domain), higher-molecular-weight
phosphotyrosine protein phosg)hatases, motor proteins, phosphoribulokinase/pantothenate kinase, tyrosine-dependent oxidoreductases, aldo—keto

protein kinases (catalytic subunit), HSP90 (N-terminal domain), aldo—keto reductases (NADP), NAD-binding domain of HMG-CoA reductase, ITPase

protein kinases (catalytic subunit), higher-molecular-weight phosphotyrosine protein phosphatases, G proteins, aldo—keto reductases (NADP),

eukaryotic proteases, GRIP domain, 5’(3’)-deoxyribonucleotidase (dNT-2), DPP6 N-terminal domain-like, BadF/BadG/BcrA/BcrD-like, SH2

protein kinases (catalytic subunit), HSP90 (N-terminal domain), higher-molecular-weight phosphotyrosine protein phosphatases, G proteins,

phosphoribulokinase/pantothenate kinase, eukaryotic proteases, nuclear receptor ligand-binding domain, cofactor-dependent phosphoglycerate

molecule
DB02197
reductases (NADP), galectin (animal S-lectin), transthyretin (prealbumin)
DB03869
(HAM1), G proteins, carbonic anhydrase, eukaryotic proteases, PDEase, nuclear receptor ligand-binding domain
DB02010
domain
DB00686
mutase, fatty acid binding protein-like, cyclin
DB04700

protein kinases (catalytic subunit), HSP90 (N-terminal domain), carbonic anhydrase, nuclear receptor ligand-binding domain, purine and uridine

phosphorylases, terpene synthases, transducin (alpha subunit), glutathione S-transferase (C-terminal domain), methionine aminopeptidase
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Figure 7. Similarly shaped protein binding pockets bind similar molecules. (A) Histogram where the left-most protein target on the x-axis
corresponded to the protein target whose pocket was most similar to the template. If these histograms tapered off to the right, this indicates that
protein target—ligand commonality is highly correlated to the three-dimensional spatial similarity of their binding pockets. (B) Commonality of the
top-ranked drugs. The predicted top 5 ranked drugs were counted for each target. Commonality is defined as the number of times a molecule from
the top-rank list for a reference protein target also shows up in the corresponding top-rank list for the rest of the targets. The histogram depicts the
“commonality score” for molecules within the top S rank list for each protein target data set. The top S protein targets (with respect to commonality
score), which were cocrystallized with a nucleotide (4 out of S are GDP, one is adenosine), are highlighted with their PDB codes and name.
(C) Histogram depicting the number of molecules in common for all protein targets ordered from greatest to least with respect to pocket shape
similarity to VEGFR2. (D) Histogram depicting the number of molecules in common for all protein targets ordered from greatest to least with

respect to pocket shape similarity to ERa.

was predicted to hit the highest number of protein targets in
the top 1 and top 40 rankings (Figure 4C).

FDA “Blockbuster” Drug—Target Associations. Next we
predicted the top 200 “blockbuster” drug—target associations
and determined their frequency of occurrence across the
2335 human protein targets within the top 1 to top 40 hits
(Figure SA). Several “blockbuster” drugs are predicted to target
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proteins across multiple families. Sutent is predicted to hit the
greatest number of protein targets followed by Alimta, Lescol,
Celebrex, Premarin, Zetia, and Blopress (Figure SB). Sutent,
the drug predicted to be the most promiscuous, is a multikinase
inhibitor prescribed to treat various cancers. Remarkably,
Prograf, Valcote, Concerta, Sifrol, Niaspan, Exelon, Evodart,
Sevorane, and Klacid have no hits in our protein data set

dx.doi.org/10.1021/jm300576q | J. Med. Chem. 2012, 55, 6832—6848
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(Figure SC). Out of 2335 targets, a blockbuster drug is ranked
first for 79 targets (3.2%), ranked in the top S for 243 targets
(10.9%), and ranked in the top 20 for 816 targets (36.5%)
(Figure SD). Ninety-six targets (4.3%) are predicted to bind to
three or more “blockbuster drugs”. Taken together, these
results may imply either toxicity by cross-target effects or
potentially beneficial effects that might indicate new uses. In
addition to utility in drug repurposing, these data may also
provide clues for the synthesis of analogues with higher
specificity for particular targets if the repurposed drug shows
weak affinity toward a particular target.

Drug Promiscuity and Overlap of Protein Family and
Fold. In drug development, it is important that molecules reach
and interact with their desired targets while minimizing cross-
target interactions. However, many FDA approved drugs have
notable side effects that consumers are warned about prior to
their administration. Thus, we were interested in investigating
whether our method could more formally predict the extent of
drug promiscuity/nonspecificity. We evaluated the extent of
promiscuity in terms of protein family and fold classifications.
We used the entire SCOP database and parsed it to create a
CSV file that matches PDB IDs with their corresponding fold
and family keys.*' For each molecule in the drug data set, we
then determined the targets for which they are considered the
top 1 hit and used those PDB IDs to determine the folds and
families they correspond to. Using this information, we were
able to determine the numbers of unique folds and families that
the drugs are targeting. To objectively quantify the “pro-
miscuity” of a molecule, we devised a numerical score to create
the “value of promiscuity”. This value is the combined sum of
the number of unique folds and the number of unique families
that a particular molecule is predicted to hit. The greater this
value is, the greater the extent of promiscuity. According to
Figure 6, the three most promiscuous compounds (DB02197,
DB03869, and staurosporine) are kinase inhibitors. As
indicated above, staurosporine is a “broad-specificity kinase
inhibitor” targeting multiple families especially kinases.****
Furthermore, Tables 2 and 3 show that the five most
promiscuous drugs are predicted to interact with proteins
that have many overlapping folds/families. Intrigued by this
result, we further explored whether shape similarities of protein
binding pockets may exhibit drug promiscuity.

Similarly Shaped Protein Pockets Bind Similarly Shaped
Molecules. In drug development, it is commonly asked if
protein targets with similar binding sites bind similar molecules.
Given the central dogma of “form fits function”, it is usually
acceptable to assume this. To determine the similarity of
binding sites between proteins, we calculated the Euclidean
distances between the spherical harmonics (SH) expansion
coefficients of the binding pockets at a 6 A radius from
neighboring residues. Binding site protomols were utilized from
the sc-PDB database®” and SurFlexDock within SYBYL X.1.*®
These protomols provide a space-filled 3D structure of the
binding sites using carbon, hydrogen, and oxygen atoms. To get
a more refined sense of the pockets, we removed the oxygen
atoms because of their large atomic radii and proceeded with
the SH calculations on the remaining carbon and hydrogen
atoms. With the binding pocket shapes quantified, we then
calculated the Euclidean distances between target binding
pockets in which we took each target as a template pocket and
calculated Euclidean distances against all the other probe target
binding pockets. The most similar pockets were those whose
Euclidean distances were closest to zero. Then to determine if
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Figure 8. Mebendazole binds directly to VEGFR2 kinase assay and
also inhibits angiogenesis. (A) Mebendazole binds directly to VEGFR2
and affects VEGFR2 kinase activity with an ICy, of 3.6 uM. IC, curves
were generated using GraphPad S and a standard four-parameter
nonlinear regression model (log [inhibitor] vs response — variable
slope). Data points correspond to the averages of duplicate wells, and
error bars represent the mean =+ replicate % activity. The graphical
representation shows dashed lines at the IC, values, where the vertical
line is at log x = —5.4437. Solving the equation log x = —5.4437 results
in an ICg, of 3.6 uM. (B) Control: Staurosporine binds to VEGFR2
and affects kinase activity with an ICg, of 8 nM. (C) Mebendazole,
predicted to act as a VEGFR2 inhibitor by TMEFS, inhibits
angiogenesis in a HUVEC cell based assay. Mebendazole significantly
inhibited network formation with an ICy, of 8.8 uM, which is
implicated by the lack of cellular migration, alignment, and branching.

similarly shaped pockets bind similar molecules, we took three
approaches. First, we took drugs DB2010 (staurosporine) and
DB02197 (the most frequent hits using the top 1 and top 40
rankings, respectively) and determined if the number of
proteins with similarly shaped binding sites was greater than
the number of proteins with lesser similarity. Figure 7A is a
clustered histogram illustrating this relationship and shows that
more similarly shaped pockets exist for both drugs. Next, we
analyzed how many targets intersect with the top five reprofiled
drugs for each target. We defined this intersection to be the
number of times a top five profiled drug for a reference target
also appears in the top five rank lists with respect to the rest of
the targets. We found that many targets have drugs that are
common across the total protein data set (Figure 7B). Last, we
analyzed the estrogen receptor a protein (PDB ID 3ERD) and
vascular endothelial growth factor receptor (PDB ID 2P2H)
binding pocket commonality with respect to the 233$ targets
(Figure 7C and Figure 7D). We calculated Euclidean distances
of the 2335 target pockets against these two template pocket
structures and subsequently counted how many of the top 20
ranked molecules for each protein target were common to each
template. We found that those pockets with the greatest shape

dx.doi.org/10.1021/jm300576q | J. Med. Chem. 2012, 55, 6832—6848



Journal of Medicinal Chemistry

9A 50q
2.5
=)
x
¥0.04 _—_JJ
5
o
a
4
;5
50 T T T
-50 Q 100
Time (s)
9B 80 200uM D,\I(‘tﬁﬁ.ﬂl.fﬂkl')
|
70
60 1
S 50
z |
E 40
£ 30 1004M DMC (16, 16, 16RU)
& 20 ‘ —
v 1 1/T —————
10 1 |
0 e l r"_‘_ — '—‘,ﬂ —
10 -
10 20 30 40 50 60 70 80
Time(s)

| 50 M DMC (5, 6, 6 RU)

Response (RU)

©
Time (s)

Figure 9. Celecoxib (CCB) and dimethyl celecoxib (DMC) bind
directly to immobilized cadherin-11 (CDH11) in surface plasmon
resonance (SPR) assay. (A) CCB and DMC bind to recombinant
mouse extracellular domain (EC) 1-2 of CDHI11 protein immobilized
on the surface of the chip via similar patterns, as evident in the
sensogram. CCB and DMC were separately injected three times on
the CMS chip at 25 pM. (B, C) CCB and DMC bind in a dose-
dependent manner. (B) Lower magnification of the sensogram
showing the signals generated from 200 and 100 M DMC bound
to cadherin-11. (C) Higher magnification of the compacted signals
from panel A showing the binding levels of 50, 25, and 12 yuM DMC
to cadherin-11. Assays were performed in triplicate for each DMC
concentration.

similarity have the greatest number of drug hits in common
with the templates (Figure 7C and Figure 7D). These results
suggest that similarly shaped protein pockets bind similar
molecules and indicate that a drug can be repurposed to other
indications based in part upon similarly shaped targets.
Experimental Validation. Mebendazole Binds to VEGFR-
2 and Inhibits Angiogenesis. The TMFS method predicted
that mebendazole, an antiparasitic with unexpected anticancer
properties in animals and humans, had a strong likelihood of
binding to and inhibiting the function of VEGFR2.**
According to the final rank list of the 3671 drugs against
VEGFR2, mebendazole was ranked higher than the related
inhibitor albendazole. We therefore elected to proceed with this
experimental validation based on this particular finding.
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Figure 10. Growth inhibition of MDA-MB-231 invasive breast cancer
cell line by celecoxib (CCB) and its COX-2 inactive analogue dimethyl
celecoxib (DMC). MTS assays demonstrate concentration-dependent
cell growth inhibition when MDA-MB-231 cells were exposed to
increasing doses of CCB or DMC for 48 h. Data are presented as the
mean + SEM. (A) CCB causes inhibition with an ICy, of 40 uM, and
(B) DMC causes inhibition with an ICg, of 36 uM.

Indeed, our in vitro studies show that mebendazole binds to
VEGFR-2 and inhibits kinase activity at 3.6 uM (Figure 8A)
with staurosporine serving as the control (Figure 8B). We also
found that mebendazole blocks angiogenesis in a human
umbilical vein endothelial cell (HUVEC) based angiogenesis
functional assay. The efficiency of mebendazole to inhibit the
VEGFR2 kinase was measured by monitoring the ability of
HUVEC:s to form networks. In the HUVEC angiogenesis assay,
formation of the cellular network progresses in a stepwise
manner with an initial migration and alignment of cells,
followed by development of capillary tubelike structures,
sprouting of new branches, and finally formation of a cellular
network.*>*® Cells treated with mebendazole did not migrate
and align, sprout branches, or form networks (Figure 8C)
with an ICg, of 8.8 uM. Albendazole, a close analogue of
mebendazole, was previously demonstrated to inhibit
angiogenesis.” ™ In both assays, mebendazole is active at a
concentration similar to that approved for use in preventing
hookworm infection.

Celecoxib Binds to Cadherin-11 (CDH11). To our complete
surprise, an anti-inflammatory cycloxgenase-2 inhibitor cele-
coxib and its COX-2 inactive analogue dimethyl celecoxib
(DMC) were ranked as top hits for interaction with CDH11,
an adhesion molecule important in the inflammatory disease
rheumatoid arthritis and in several poor prognosis malignan-
cies. Consistent with its known role as a COX-2 inhibitor,
celecoxib was rank-ordered as top 1 for COX-2. Celecoxib is
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already in use as an anti-inflammatory agent in arthritis where
its activity is not solely related to inhibition of COX-2. We
assessed the ability of dimethyl celecoxib and celecoxib to bind
CDHI11 using surface plasmon resonance (Figure 9). Both
celecoxib and, importantly, the closely related but inactive (with
respect to COX-2 inhibition) dimethyl celecoxib interacted
with CDHI11 as measured by SPR. We further calculated the
growth inhibition of the MDA-MB-231 invasive breast cancer
cell line by celecoxib and DMC (Figure 10A and Figure 10B,
respectively). We found that celecoxib and DMC cause
inhibition with an ICyy of 40 and 36 uM, respectively. These
findings correlate well with experimental and clinical studies
where dimethyl celecoxib works as well as celecoxib, which
points to a COX-2-independent mode of action.**>* The
measured ICy, values of celecoxib and DMC are comparable to
known celecoxib plasma concentrations in patients. Circulating
levels in rats and in humans are in the 1-10 uM range for
celecoxib and are not known for dimethyl celecoxib.
Importantly, the Ky for the known celecoxib target Cox2 is in
the low nanomolar range for in vitro measurement of enzyme
inhibition, and yet its effects on inflammation and cancer cell
growth are in the micromolar range. Taken together with the
fact that DMC has no effect on Cox2 and yet is equally effective
as an anticancer agent and in some cases as an anti-
inflammatory, these discrepancies strongly point to a Cox2-
independent mode of action. Though the affinity of dimethyl
celecoxib for CDH11 is weak enough, this is a potential starting
point for further optimization.

B CONCLUSIONS

We have developed a new computational method called
“TMEFS” that includes a docking score, ligand and receptor
shape/topology descriptor scores, and ligand—receptor contact
point scores to predict “molecules of best fit” and filter out
most false positive interactions. Using our TMFES method, we
reprofiled 3671 FDA approved/experimental drugs against
2335 human protein targets. We predicted several drug—target
associations that could potentially be applied to new disease
indications. Literature validation using public databases reveals
that the TMFS method predicts drug—target associations with
greater than 91% accuracy for the majority of drugs. We
predicted and experimentally validated that the anti-hookworm
medication mebendazole can inhibit VEGFR2 activity and
angiogenesis and that the anti-inflammatory drug celcoxib and
its analogue DMC can bind to CDHI11, a biomolecule that is
very important in rheumatoid arthritis and poor prognosis
malignancies and for which no targeted therapies currently
exist. TMFS-predicted drug—target associations not only reveal
potential drug candidates for new indications but also provide
structural insight into their mechanism of action and cross-
target effects.

Despite these promising results, it is imperative that we
discuss the current limitations of our method. TMFS is reliant
on the presence of a crystallized protein—ligand complex,
where the bioactive conformations of both the protein pocket
and ligand are known. This information is important for
obtaining descriptor values, such as shape, that are as close to
the natural occurrence as possible. However, we understand
that it may be difficult to apply TMES to emerging targets that
do not have an X-ray structure or known low molecular weight
compounds that modulate them. In an attempt to address these
issues, we are currently working on fine-tuning TMFS so that it
may reliably predict ligand—protein interactions for targets
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crystallized without a known associated ligand. Since the shape
of the binding pocket will be known in this scenario, TMFS
would be able to rely mostly on shape differences between the
binding pocket and query ligands, for, as we have shown in
Figure 2A, the shape descriptor alone is able to provide
significant enrichment.

Since we started our work, the NIH’s Chemical Genomics
Center (NCGC) opened its Pharmaceutical Collection data-
base for public screening of nearly 27 000 active pharmaceutical
ingredients, including 2750 approved small-molecule drugs and
all compounds registered for human clinical trials.* In  this
study, we screened only 3671 compounds. We are currently
extending our computational screening to include these 27 000
active pharmaceutical ingredients to all human proteins and
other species, including infectious diseases. An obvious
advantage of drug repositioning is that existing drugs approved
for human use have known pharmacokinetics, toxicity, and
safety profiles. Hence, any newly identified use can be rapidly
evaluated directly in phase II clinical trials, thus reducing time
and cost. Although clinical studies will be needed before a drug
can be approved for a new indication, this work shows that
computational screening of approved drugs can uncover
additional uses for other targets/diseases.
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